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Compressible laminar flow in a capillary 
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An equation based on the hydrodynamical equations of change is solved, analytically 
and numerically, for the calculation of the viscosity from the mass-flow rate of a 
steady, isothermal, compressible and laminar flow in a capillary. It is shown that by 
far the most dominant correction is that due to the compressibility of the fluid, 
computable from the equation of state. The combined correction for the acceleration 
of the fluid and the change of the velocity profile appears to be 1.5 times larger than 
the correction accepted to date. 

1. Introduction 
The study of a capillary flow was initiated 150 years ago by the French physician 

Poiseuille (1840) with his ‘Recherches experimentales sup le mouvement des liquides 
dans les tubes de trks petits diametres’. From this experimental work on distilled 
water he deduced the following proportion between the volume Aow rate Q and the 
pressure difference Ap : D4 A p  Q = k”-  

L .  

L and D are the dimensions of the capillary, the length and the diameter. Poiseuille 
determined the proportion factor k” from the experimental results on water and 
concluded that its value is constant for given temperature and pressure. The concept 
of the viscosity of the liquid was not mentioned a t  all at  that time. When we now 
apply this value of E” to calculate the viscosity 7 of water for the corresponding 
experimental circumstances, namely a temperature of 10 “C and a pressure of about 
0.1 MPa, using 7 = x/(128k”) we obtain a value which is, astoundingly, only 0.2% 
larger than the value calculated from the most recent formula for the viscosity of 
water given by Kestin et al. (1985). This very nice agreement is, of course, mainly due 
to the high accuracy of the experimental work of Poiseuille, but also to the fact that 
the experiment concerned a practically incompressible liquid flow, that is very well 
described by ( 1 ) .  However, van den Berg, ten Seldam & van der Gulik (1990) showed 
that, for instance, in the case of a gas flow, the compressibility of the fluid has to be 
taken into account, since this can cause a considerable reduction in the volume flow 
rate as calculated from ( 1 ) .  For a long period, incorporation of the correction for the 
compressibility has been based on heuristic arguments. It is the principal goal of the 
present paper to show that this correction originates from theoretical equations for 
a capillary flow and, moreover, that  additional corrections are an order of magnitude 
lower. As a consequence, a sound basis for the accurate calculation of the viscosity 
measured with a capillary viscometer is established, even for experimental 
circumstances where a substantial correction for the compressibility of the fluid must 
be applied. 
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Section 2 contains the hydrodynamical conservation equations in their general 
form and the reduced version of the equation of motion in cylindrical coordinates 
corresponding with the simplifying conditions under which the problem of a 
compressible capillary flow will be solved. These conditions refer in particular to the 
laminar, axial and isothermal flow of a Newtonian fluid. 

In $ 3  the solution of this flow problem is derived analytically from the equation 
of motion by means of a perturbation method, successively up to the second order, 
in terms of two dimensionless parameters, both of which are zero for an 
incompressible fluid. The main effect of the acceleration in a compressible flow is 
described by the key parameter C,, whereas the second, less important, parameter C, 
accounts for the resulting effect of an extra viscous force. The zero-order calculation 
leads to the well-known parabolic velocity profile, while the viscosity is found to be 
the product of the Poiseuille expression, valid for an incompressible fluid, and a 
‘ compression correction ’ factor equal to the ratio of a mean density in the capillary 
and the  density a t  its beginning. In  the first order, where C ,  is still small, a correction 
term is found which is of the same form as the previously calculated correction due 
to the acceleration of the fluid, but 1.5 times larger ; the excess is because the velocity 
profile is no longer parabolic. For larger values of the parameter C,, a method is 
described in $4 whereby the equation of motion with C, = O  can be solved 
numerically and which also yields the development of various quantities such as 
pressure, density and velocity along the axis of the capillary. 

2. Hydrodynamical equations and conditions 
A compressible capillary flow, generated by a force due to a static pressure p in the 

fluid, is examined for a system without heat production from external sources. 
Therefore, the evolution of the density p,  the velocity u and the internal energy Gper 
unit mass in this system is described by the three hydrodynamical conservation 
equations : 

continuity 

motion 

and energy 

9 Dr = - p ( V . u ) ,  

Du 
Dr 

p- = - v . p  

p- = - ( V * q + P : ( V u ) ) ,  
DO 
Dr 

(3) 

(4) 

where r is the time and D/Dr is an abbreviation for a/Ck+u.V,  namely the 
‘derivative following the motion’; P is the pressure tensor and q is the heat-flow 
vector. 

For our problem, namely compressible flow through a straight circular capillary, 
the various equations are not expressed in rectangular coordinates but rather in the 
more appropriate cylindrical coordinates (Y, 8,x) .  The full hydrodynamical equations 
are rarely used to set up flow problems. Instead, restricted forms of these 
equations are usually adapted. All the conditions that underlie the solutions of the 
equations as deduced in this paper are summarized below. 

(i) The fluid is Newtonian. 
(ii) The radius R of the capillary is small compared to  its length L ; R/L is of the 

order 
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(iii) The flow is stationary, i.e. changes in time are sufficiently slow to allow terms 
with partial time derivatives to be discarded. 

(iv) The radial and azimuthal flow velocity components, u, and uo, can be 
discarded, i.e. the flow is strictly axial and laminar; the Reynolds number Re 
( =  2 R p ~ / 7 ,  with the mean flow velocity) is less than about 2000. 

(v) The pressure p is a function of z only. 
(vi) There is axial symmetry, i.e. the axial flow velocity component u, is not a 

(vii) There is no Knudsen flow; the fluid is considered to be a continuum, 
(viii) There is no slip flow a t  the wall; the fluid velocity along the wall is zero. 
(ix) There are no gravity effects. 
(x) An influx correction is not considered. 
(xi) Both the shear and the bulk viscosity of the fluid are constant in the pressure 

range throughout the capillary. 
(xii) The flow is isothermal. 
Some additional comments should be made with respect to these conditions. 

( 5 )  

where 7 is the coefficient of shear viscosity of the fluid and K the coefficient of bulk 
viscosity, I the unit tensor and S the rate-of-shear tensor defined by 

function of 8, but only of r and z. 

Condition (i) means that the pressure tensor can be written as 

P = PI- 2 7 s  - K ( V .  U) 1, 

s =~(Vu+(VU)*) - -g (v . . ) / .  (6) 

Condition (iv) seems reasonable in view of condition (ii). The problem of the 
additional pressure drop at  the inlet8 of the capillary (condition x) has been tackled 
by many authors for an incompressible fluid. The corresponding relative correction 
on the volume flow rate can be written as -+n(R/L)Re, where the quantity m, i.e. 
the coefficient of the Hagenbeck-Couette correction, generally has a value of the 
order of unity, depending on the shape of the capillary entrance and exit. By a 
numerical computation for a capillary with square-cut ends Kestin, Sokolov & 
Wakeham (1973) found that m is not constant but varies in inverse proportion to the 
Reynolds number with a limiting value of 1.12 for Re 

The important assumption that the flow is isothermal (condition xii) can only be 
partly justified, as shown in a separate paper by van den Berg, ten Seldam & van der 
Gulik (1993) in which the net thermal effect in a compressible viscous flow was 
calculated from the contributions for cooling and heating, due to expansion of the 
fluid and viscous dissipation respectively. In  this calculation, the temperature of the 
wall of the capillary is assumed to be constant and equal to the ambient temperature 
To over the whole length. The key parameter in the treatment is the dimensionless 
quantity C = - (T, /p) (i3p/aT),. A second parameter is the PQclet number Pe = RePr, 
where Pr is the Prandtl number. The authors also showed that the thermal effect 
evolves over a characteristic length, the so-called entry length AL,, which for 
Pe > 50 is given by ALT/L = 0.625(R/L) Pe. It is concluded that, generally, 
the temperature changes in the flow are very small, namely a few mK, and that 
M,/L 4 1 .  However, for a very compressible fluid, e.g. in the vicinity of the 
gas-liquid critical point (C 9 1, Pe >> l ) ,  the contribution of cooling is by far the most 
dominant, so that a substantial reduction of the temperature of the flowing fluid 
results and, moreover, a significant increase of the entry length. Consequently, for 
these special circumstances the premise of an isothermal flow must be abandoned. 

1. 
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Along with the equation of state 

P = P03, T ) ,  (7) 

and the boundary and initial conditions, (2)-(6) give a complete determination of the 
distributions of pressure, density, velocity components and viscosity in the flowing 
fluid a t  constant temperature T.  

Under the above-mentioned simplifying conditions, the equation of continuity (2) 
reduces t o  

and the equation of motion (3) for the radial and axial velocity components, 
respectively, to 

and 

while the equation of energy becomes superfluous. 
The equation of motion (10) can be solved using only the equation of continuity 

(8). Initially, (9) is omitted since the constraint it imposes on U ~ ( T ,  z )  shows that for 
a compressible fluid the conditions (iv) and (v), i.e. strictly axial flow in which the 
pressure is a function of z only, are in principle incompatible. However, a t  the end 
of the next section we will quantify the conditions under which the results may, 
nevertheless, be used. I n  that consideration the limitation on R / L  as expressed by 
condition (ii) is crucial. 

Because of conditions (v) and (xii), the density p of the fluid is also a function of 
z only. Integration of the equation of continuity (8) then implies 

p ( 4  U,(T, 4 = f(.) or U,(T, 4 = Urn(4P(T) .  (11)  

From the point of view of symmetry it can be argued that the dimensionless velocity- 
profile function F(r )  has a maximum for r = 0 and hence, dF/dr = 0 for that value 
of r .  The assumption that there is no slip a t  the wall (condition viii) yields F(R) = 0 
and, by transfer of constant factors from F ( r )  to u,(z), F ( 0 )  can be made equal to  1 ; 
u,(z) is then identical to the maximum velocity u,(O, 2). Expression (11) for u,(r, z )  
is inserted in the equation of motion (10); moreover, a reduced velocity-profile 
function E ( x )  is defined by 

E(x )  = F ( r )  with x = r/R. (12) 

Equation (10) then becomes 

where the operator 

In  (13), the centreline velocity u,(z) is replaced by the density p(z) by means of 

u m ( 4  = W/P(ZL (15) 
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where the quantity W ,  in consequence of (1 1) and (12), is related to the mass-flow rate 
I ,  according to 

(16) 1 = 1; 2nr drp(z) uZ(r, z )  = 2nR2 W E ( x )  x dx, 1: 
and thus W is a constant for the flow. The whole equation is then multiplied by p(z) 
and a rearrangement of the terms leads to 

- ~ * E 2 ( s ) + ~  E ( x )  =-p-+,JE(x). dP YW, (17) 
dz dz R 

Before it is solved, (17) is transformed into a dimensionless form. Initially, this 
equation is further simplified by integrating it over the length of the capillary, where 
the axial coordinate z crosses the interval [0, L], the pressure p ( z )  decreases from 
p ,  = p(0)  to pex = p(L) and the density p(z) from pb = p(0) to pex = p(L) .  The result 
is 

where the constants X, Y and Z are defined by 

Ap ( =  pb-pex) is the pressure difference over the capillary and (p(p) )  a density 
defined as the average of p(p) over the pressure interval be,, pb]. It should be noted 
that the evaluation of X and, thus, of this mean density can be carried out easily, 
since for that purpose only the equation of state of the fluid, p = p(p), and the 
pressures at the capillary ends need to be known. Consequently, X and Y (but not 2) 
can be calculated without a knowledge of p(z) and thus depend on the fluid and 
controllable external experimental conditions only and not on the flow. On the other 
hand, with p(z) a different mean density (p(z ) )  can be defined as (l/L)Skp(z)dz, 
which is in general more difficult t o  compute. These two mean densities are 
numerically equal in the common case of a constant axial pressure gradient. 

Finally, the introduction of the dimensionless constants C,, C, and C, by 

offers the possibility of writing the equation governing the motion in a clear, 
dimensionless form : 

C, E2( X) - c, E ( x )  = 1 + c, Y E ( X ) ,  (21) 

with the normalization and boundary conditions 

(E)z-o = O. E(0)  = 1 ,  E(1) = 0, 

For an incompressible fluid pb = pex, so that the quantities Y and Z and, 
consequently, also the constants C, and C, are zero. 

I n  the next section it will be shown that the present compressible flow problem can 
be treated by a perturbation method in terms of C, and C,. It turns out that C,  is 
the key parameter proportional to (R/L)Re Y ,  while the second, less important, 



6 H .  R. van den  Berg, C. A .  ten Seldam and P. 8. van dcr Gulik 

parameter C, is proportional to ( (RIL)  Y ) z .  Moreover, it should be emphasized that 
none of the perturbation parameters C,, C, or C, are known in advance, but depend 
on the solution itself. 

3. Perturbation solutions 
3.1. General formalism 

We now aim to solve (21) analytically for a compressible capillary flow. Since the left- 
hand side of this equation vanishes for an incompressible fluid, it may be presumed 
that, for a slightly compressible fluid, this left-hand side is small. Therefore, a 
perturbation method in terms of the parameters C, and C, is applied. 

Firstly, the velocity-profile function E ( x )  is developed in powers of C, and C,: 
n n  

E(")(z) = C E,,Jx) C: 
I = O  j =o  
i t j  G n 

where the superscript (n) denotes the order n of the approximation. This power series 
implies 

Subsequently, these two series expansions are substituted in (21). The solution of this 
equation is then derived in successive powers of Cq Ci by equating the corresponding 
terms on both sides of the equation. This procedure is carried out in a purely formal 
way, which means that at present no attention is paid to the magnitude, in a 
physical sense, of the various terms. This leads to:  

Zero order 
i = 0 , j  = 0 :  0 = l + c p m o , o ( x ) ;  

i = 1, j  = 0 : E 2  0 , o  (x) = cp[yl,09-Eo,o(x)+~E,,o(x)], 
i = 0, j  = 1 :  -Eo,o(x)  = C ~ ~ ~ [ y o , , ~ E o , o ( z ) + ~ ~ o , l ( x ) ] ;  

First order 

Xecond order 
i = 2 , j  = 0 :  

i =  l , j=  1 :  
2Eo,o(~)E1,0(z) = ~ ~ o ~ ~ Y , , o ~ ~ o , o ~ ~ ~ + Y l , o ~ ~ l , o ~ ~ ~ + ~ - E z , o ~ ~ ~ l ~  P7a) 

2Eo,o(x)-Eo,,(x) -E1,0(4 

= ~ ~ ~ ~ Y ~ , l 9 - ~ o , o ~ ~ ~ + ~ o , l 9 - - E , , o ~ ~ ~ + ~ l , o ~ ~ o , l ~ ~ ~ + ~ - E l , l ~ ~ ~ l ~  ( 2 7 b )  

-Eo,d4 = ~ ( , o ~ ~ Y o , , ~ ~ o , o ~ ~ ~ + Y o , 1 ~ - E o , l ~ ~ ~ + ~ ~ o , , ~ ~ ~ l ~  (27c) 

i = 0 , j  = 2 :  

etc. 
These sets of equations are solved at successive order, where the concept 'order' 

refers only to the total power of C: Ci. The nth set consists of n + 1 equations. Each 
of these equations separately contains only one unknown function E, ,Jx)  and 
corresponding constant Y ~ , ~ ,  with i+j = n, while the remaining functions and 
constants, for which i+j < n, have already been found from the foregoing sets of 
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equations. Thus, the functions Ei , j (x)  can easily be found, while the values of yi,c' and 
of the two integration constants are fixed by application of the normalization and 
boundary conditions (22) : 

E,,,(O) = 1, hence E,,JO) = 0 for i , j  = 0 , 1 , 2  ,... with i + j  3 1,) 

To find the corresponding expression for the viscosity a t  the order (n), the nth-order 
velocity profile E(")(x) is substituted in the integrand of (16). Using the fact that the 
mass-flow rate I is a constant for the flow, this leads, firstly, to an expression for the 
quantity W(") in terms of the parameters C1 and C,, namely 

with 

Further, with (20) and (24) for C,, the viscosity Y / ( ~ )  can then be written as 

where, for consistency of the calculation, the final series expansion for Y/@) in terms 
of C: Cg should be truncated to terms with i + j  < n. For clarity, it should be noted 
that q(n) refers to the viscosity calculated at the nth order from experimental data. 
There is, therefore, no inconsistency at  all with the assumption of a constant 
viscosity in the capillary (condition x). 

The exact values of the parameters C, and C, can be calculated simultaneously 
from the respective expressions in (20), which are written for that purpose as 

c, = C:')]' i=O j=O CiCi], (32) 
l + Z  Z w i , j C ; c {  l < a + j  

i=o j=o 
1Ca+j 

with 

The consistency of the perturbation calculation should be maintained throughout 
each order, also in the case of C, and C,. In  practice, this will be accomplished by 
developing C,, like C,, into a series of successive powers of Ci C; and, subsequently, 
by transformation of both series together into power series of the zero-order terms 
Cy)t Cia)', and by restricting these series to that finite number of terms that does not 
exceed the order of the calculation. 

3.2.  Zero-order solution 

From (25) follows that 
9-EO,,(X) = - 1/cp,. (34) 
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Integration of this second-order differential equation under the normalization and 
boundary conditions (28)  then leads to 

E,,,(x) = 1-x2 (35)  

and C',O) = a. (36) 

p ( z ) u Z ) ( z )  = W'O' = 21/(nR2). 

Eo, o (x )  represents the well-known parabolic velocity profile. Substitution of this 
profile in (16) yields 

With these results for Cf) and W'O), the viscosity is calculated from (20) as 

(37) 

with 

and 

(39) 

Thus, as solution for T ( O ) ,  the viscosity of a compressible fluid a t  zero order, we 
obtain the Poiseuille expression qp for an incompressible fluid expressed in terms of 
the mass-flow rate, times the 'compression factor' F,. 

Parameters Cf') and Cgo), given in (33), are expressed in terms of various 
experimentally obtainable quantities by substitution of the results (36) and (37) for 
Cp) and WcO). Namely, 

which, in order to elucidate the physical meaning of this parameter, can also be 
written in terms of the Reynolds number a t  zero-order (Re'O)) and the isothermal 
compressibility K~ as 

and furthermore 

For the calculation of the quantity 2 from (19) the precise form of the function p(z) 
is required. If we assume 2 =fy2/L, then 

= P g Y ) '  with f* =-  :i 1+-- :;) f .  (44) 

Thus, Cf') and Cp) contain only (easily) measurable basic quantities, with the 
exception off, since this quantity must be calculated from the axial dependence of 
the density in the capillary. In  order to obtain a reasonable estimate of the quantity 
f ,  three particular cases are examined. Firstly, the usual linear dependence for p(z), 
p ( z )  = Pb- (Pb-Pex)  z / L ,  wheref is calculated to be equal to about 2. Secondly, the 
exponential dependence, p(z) = p b  exp ( - zY/L) ,  in which case f equals 1, and, 
thirdly, the case of p(z) as calculated by Prud'homme, Chapman & Bowen (1986) for 
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the compressible flow of an ideal gas. From their solution, expressed in somewhat 
different parameters, it  can be derived that f equals about 3. From these examples 
we may conclude that f is most likely a number of the order of unity. 

From (42) and (44) it can be seen that for Re M 1 one obtains C, M C:. The only 
implication of this estimation is that the ordering with respect t o  magnitude does not 
coincide with the formal ordering in the expansion scheme of 4 3.1 and, consequently, 
that for a physical interpretation of the results, terms of different formal orders must 
be combined. 

3.3. First-order solution 
The first-order solutions yl,o and E,,,(x) are computed from (26a) by substitution of 
the zero-order solutions (35) for E0,,(x) and (36) for CP), followed by repeated 
integration with application of the boundary conditions (28). This results in 

and 

11 
Yl,O = -- 

El, ,(x) = &( 1 - x 2 )  x2(7 - 2x2); 

and consequently 

Likewise, from (26b)  follows 
Y0,l = $7 

Eo,,(x) = -$(l-x2)x2, 

W o , ,  = -1 12' 

(45) 

(46) 

(47) 

Thus, according to  (23), the velocity profile a t  first order is given by 

E("(x) = (1-x2) [l+T?sx2(7-2~2)C,-$x2C3], (51) 

and, according to (31), the corresponding perturbation solution for the viscosity ~ ( l )  

by 
q ( 1 )  = p )  ( 1 - SC, + $C,) (1  + +c, - &C3), 

p = p )  (1 - 'C + 2c ) 

(52) 

(53) 

which, for consistency of the calculation, must be truncated to 

2 1  3 3 '  

By imposing corresponding consistency restrictions on (32), the values of the 
parameters C, and C ,  are found to be 

C, = Cy) = ci") and C, = Cp) = Cp). (54) 

Therefore, after substitution of (42) and (44) for Cia) and Cp), the final form of the 
formal first-order solution for the viscosity reads 

The third term in this expression originates from the azuz/az2 term in the equation 
of motion (10). As shown in (44), the accessory coefficient f* contains the ratio K / v  

of the bulk and shear viscosities. In  experiments, Madigosky (1967) found values of 
up to 0.7 for this ratio in dense gaseous argon. From experimental data on water and 
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a number of organic liquids, Karim & Rosenhead (1952) deduced that the value of 
this viscosity ratio ranges from about 1 to 120. Consequently, we estimate that the 
corresponding relative correction to  the calculated viscosity is smaller than 0.01 YO, 
on condition that R/L < lop3, Y < 1 or pex 3 0.37pb, and f d 3. 

It should be emphasized that the exact axial dependence of the density in the 
capillary, which is unknown in this calculation, has no quantitative effect on the 
outcome of‘the estimation for the third term in (55) ,  because of the ample margin 
taken for the quantity f.  Thus, for practical applications we can neglect this term 
which is, actually, of the second order with respect to magnitude as pointed out in 
9 3.2. In  that case, the real first-order solution for the viscosity can also be written as 

which one could call the modi$ed Poiseuille formula (MPF). It consists of the zero- 
order term q ( O )  and one correction term. 

Erk (1929) found the same form for this correction term, with a difference only in 
the value of the numerical factor in the denominator, viz. 8 instead of 4. It was 
entit,led ‘acceleration correction’, but it turns out that this name does not entirely 
fit the numerical factor in Erk’s result. Its true value, the strict acceleration 
correction, can be obtained from (21) with C3 = 0 by substitution of the zero-order 
parabolic velocity profile E,,,(x) in both sides of this equation and, subsequently, 
integration over the cross-section with the weight function x : 

1 

Cl ln  (l-x2)2Xdz = (57) 

4c, = l-$C1. 

The constant C, is expressed in terms of the coefficient of viscosity by using (24) with 
Cr) = and (31) where all the coefficients w ~ , ~  are taken equal to zero (or W = W(O)). 
This gives 

which leads to 

or, substituting (41) for C,, to 

c, = iq/q‘O’, (58) 

(59) q / p ’  = 1-l.C 3 1,  

Thus, this approximation for the first-order solution takes the acceleration of 
the fluid into account, but retains the parabolic velocity profile (35) throughout. 
In  comparison with the exact first-order solution (56), formula (60) shows that, 
due to the non-parabolicity of the velocity profile, an additional correction, 
- I / (  1 2 d )  In (pb/pex), enters which is half the size of the strict acceleration 
correction. The left-hand side of (57) is actually a computation of the average of the 
squared velocity. Frequently in the past, e.g. Erk (1929), Kao, Ruska & Kobayashi 
(1968), and Kestin et al. (1973), instead of the term $C, in (59) the term iCl was found, 
deviating by a factor 2 instead of $ from the complete solution SC,. This difference is 
because these authors approximated the acceleration correction on the basis of the 
square of the average velocity. 

The derivation of the ‘working equation for a capillary viscometer with non- 
steady compressible flow’ by van den Berg et al. (1990) is based on the MPF, not 
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however in the form given in (56), but in a differential form. This form can be 
obtained from the basic equation (17) ,  following the same procedure as used in the 
derivation of (56), but omitting the integration of (17) over the length of the 
capillary, i.e. over the axial coordinate z .  This procedure implies that the differential 
M P F  can also be obtained by a direct conversion of (56), replacing L by dx, Ap by 
dp, A(ln p )  by d(ln p)  and ( p ( p ) )  by p, resulting in 

3.4. Second-order solution 
The second-order solutions are computed from (27) following the same procedure as 
applied for the first-order solutions. The results of this straightforward calculation 
can be summarized as follows : 

coefficients yi,i 

324007 Y1,l =8, Y 0 . 2  = 144 9 

velocity profile 

E")(x) = (1 -x') [ 1 +&x2(7 - 2x2) Cl -&." C3 
+ &x2( 187 1 + 67 1x2 - 7 2 9 ~ ~  + 9 6 ~ ~ )  C: 

+&xZ( - 101 - 1 3 ~ 2 +  1 1 x 4 )  c, CS+&2( 11 + 2 2 )  c;] ; (63) 

coefficients wi, 

521 
4320) w0,2  = A' 36007 wl, 1 = -- w2,0 = 223 

According to (31) the perturbation solution r(2) for the viscosity is then given by 

p = p'(1-~c1+3c 4 3 -2osrc2+3c 32400 1 32 1 c 3 -"C2). 144 3 

(l+$C1-LC +229c2- 5 2 1 c  c +'C2) 

p = +O) (1-$-l+gc3-lec2+29c c -'C2). 

12 3 3600 1 4320 1 3 18 3 ) 

or, consistent with the order of calculation, by 

(64) 

The values of the parameters C, and C3 to be substituted in the second-order results 
must also be calculated consistently. Therefore, C, is written as 

270 1 a70 I 3 24 3 

By using (32) for C,, where the coefficients w ~ , ~  are known for i , j  = 0,1 ,2 ,  one obtains 
for the coefficients v ~ , ~  

ol,o = -2w1,, = - 2  9 ,  "0, 1 = - 2W0,l = 8 ,  
V z , o  = 3w~,o-2wg,o =-&, 
v ~ , ~  = 3 ~ : , , - 2 ~ ~ , ~  = -a. 

"1,1 = 6~1,0~0,1-2w1,1  

Eventually, (65) and (32) for C, and C3 in terms of C:C$ are transformed into 

c - Cl"' ( 1 - ZC(0) + 1C(O) - eo7C(OP + lOlC(0) C(0) + LC'0'2) 

c - cp ( 1 - UC(0) + SC(0) + 257(0P - 403C(O) C(0) + DC(0)Z). 
1 -  9 1 6 3 16200 1 2160 1 3 144 3 

3 -  18 1 4 3 3600 1 864 1 3 36 3 
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For the second-order calculation, only the first three terms of these expansions for 
C, and C, need be taken into account. Substitution of these terms in (64) leads to the 
final formal second-order perturbation solution for the viscosity 

p = p ( 1  - H  lC(0) + ZC(0) 3 3 + LLc(o)2 270 1 - UC(0) 80 1 ( y o )  3 + UC‘O’Z)~ 24 3 (68) 

If an ordering with respect to magnitude is pursued, at  second order the last two 
terms of (68) must be ignored. 

3.5. Correction due to non-zero radial pressure gradient 

For an incompressible fluid the following equivalence between the radial velocity 
component u, and the radial pressure gradient holds: 

aP u, = 0 0 -  = 0. 
ar 

However, for a compressible fluid this equivalence is no longer valid. In that case, 
assuming u, = 0, 

This equation is almost the same as (9), but without the equalization to zero which 
was based on the assumption p = p ( z ) .  The incompatibility of these two assumptions 
(conditions iv and v in $ 2 )  has already been pointed out and, therefore, the axial part 
of the equation of motion (10) was solved without taking the radial part (9) into 
account. In  this subsection it will be shown that the solution derived from (10) leads 
nevertheless to a correction for a non-zero radial pressure gradient by means of the 
parameter C,. 

In  order to calculate the radial pressure gradient from (70), the axial velocity 
u,(r ,z)  is expressed in terms of the maximum centreline velocity urn(%) and the 
profile function E ( x )  according to (11)  and (12). With x = r / R  that gives 

Subsequently, (15) for u,(z) and (35) for E ( x ) ,  i.e. the zero-order (parabolic) velocity 
profile Eo,o(x),  are substituted and the average over the cross-section of the capillary 
is taken for both sides of the equation. This leads to 

By applying the operator ji dz p a/&. . . on this equation and, furthermore, by using 
the expressions (19) and (20) for the quantity 2 and the parameter C,, the following 
relation between C ,  and the radial pressure gradient can be obtained: 

This relation proves that, from the assumption ap/& = 0,  i t  follows that C, = 0 or, 
vice versa, that the introduction of the parameter C, + 0 turns out to be equivalent 
to the tacit abandonment of the condition that p is a function of z only. 
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A simple expression for (ap/ax> can be found from (71) by substitution of the zero- 
order solutions for E ( x )  and u,(z), which are given by (35) and by the combination 
of (37) and (38). With the dimensionless coordinate 6 = z/L that gives 

Equations (73) and (74) show, once again, that C, is of second order in RIL and, 
consequently, is also the correction for the non-zero radial pressure gradient. 

3.6. Discussion 
Prins (1991) showed in a treatment of capillary flow in terms of the parameter R/L, 
that the ratio of the radial velocity u, to the axial velocity u, is of the order (R/L)3. 
This means that for computations up to the second order the radial velocity 
component can be neglected, as assumed by condition (ii) of $2. However, from (74) 
can be concluded that the ratio of ap/& to i3pIaz is of the first order in RIL, a result 
which contradicts the intuitive feeling that the two ratios should be of the same order 
in RIL. A partial explanation of this apparent discrepancy can be given by the 
remark that in the x-direction a real flow of the fluid exists whereas in the radial 
direction there seems t o  be no net flow. 

Equation (74) shows that, except for the case that p depends linearly on the axial 
coordinate, the solution of (10) contains a non-zero radial pressure gradient ; thus, the 
conflict with condition (v) that p is a function of z only, remains. However, as shown 
by Prins (1991), if p(r, z )  is expanded in terms of R/L,  the second-order term is found 
to be the first which depends on r also. Hence, the error made in imposing condition 
(v) is at most of the second order and is, moreover, partially accounted for by the 
introduction of the C, term. 

We may conclude that, for small values of C, (10-3-10-5) describing normal 
experimental circumstances, the simple first-order perturbation solution of (21) is 
sufficiently accurate for the calculation of the viscosity (or flow rate) from 
experimental data. For larger values of C,, (21) has been solved numerically as will 
be described in the next section. 

Papers dealing with a basic calculation of a compressible capillary flow are very 
rare. The only possibility for an extensive comparison with the present results is the 
work of Prud’homme et al. (1986) who calculated the mass-flow rate through a long 
tube for an ideal gas. Their solution of (lo), with the bulk viscosity K = 0 (i.e. exact 
in the case of a monoatomic ideal gas), also uses a perturbation method but in terms 
of a different set of parameters. In (A 5) of the Appendix we have expressed their 
result in terms of the present parameters Gp) and Cp). Thence we may conclude that 
up to the second order of magnitude (i.e. the terms Cp), Cf‘) and C?)*), the 
transformed Prud’homme result and the present result (68) for q(,) are matched 
completely in the case of an ideal gas. 

4. Numerical solution 
4.1. Method 

The perturbation solutions of (21) given in the previous section are applicable for 
small values of the parameter G,. Moreover, in the analysis so far it has been tacitly 
assumed that C, (and hence C,) is independent of z. Actually, this assumption arises 
from the fact that our derivation starts from the form of the equation of motion 
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given in (is), integrated over L,  instead of from the unintegrated form (17) .  A 
consequence of this procedure is that no insight is revealed into the development of 
various quantities, such as pressure, density and velocity, along the capillary in the 
case of a compressible flow. To overcome both limitations, a numerical solution of 
(17) will he presented in this section. The second term on the left-hand side of the 
equation is neglected in this computation in view of the minor impact of this term, 
as concluded from the estimation made in $3.3. 

In  analogy with the dimensionless constants C ,  and C, introduced in (20) we define 
their x-dependent counterparts as 

el = .:.($) 
T 

w Turn 
R2(dp/dz) ’ 

c, = - 

(75) 

so that (17) can again be written in the form given in (21) with C ,  = 0. By means of 
the transformation q = x 8  with 8 = 6;; and by defining E ( x )  = E(q/E)  = B(q), (21) 
is then transformed into 

which, subsequently, is split up into 

and 

(77) 

(78) 

(79) 

For a given value of el, the profile functionD(q) and the function qB(q) can be solved 
simultaneously from these two first-order differential equations by the Runge-Kutta 
method (Collatz 1960), starting from the initial conditions : 

The calculation is carried out for various step sizes in q and, in each of these cases, - 
is terminated when D(q) becomes negative. The transformation factor E = E(C,) 
can then be obtained from the no-slip condition E(1) = 0 as that value of q for which 
D(q) = 0. The value of the constant f?2(fil) is then found to  be 

e2(e1) = l / P .  (81) 

A@,)  = I/(WR2),  (82) 

For practical applications it is appropriate to  define a new parameter A ( c l )  by 

which according to (16) corresponds to 

Integration of (78) and (79) was performed for 51 values of the compressibility 
parameter el between 0 and 0.50 with an increment of 0.01 ; for each of these values 
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FIGURE i. The dependence of th? quantities fi2 and A and of the auxiliary quantities 6, A2 and 
C, A on the parameter C,, calculated numerically from the equation of motion. 
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FIGURE 2. (a) The velocity_pr_ofile E ( x )  across the radius of the capillary for two values of the 
compressibility parameter C, ; C, =-0 represents the parabolic velocity profile for an incompressible 
fluid. ( b )  Deviations AE(z), where C, = 0.5, from the parabolic velocity profile for the numerically 
calculated profile E ( x ) ,  the first-order perturbation profile W ) ( z ) ,  and the second-order perturbation 
profile E ( 2 ) ( x ) .  

the corresponding values of both 8, and A as well as those of the auxiliary quantities 
A' and c2 A are computed from D(q).  The latter two are introduced since they are 

convenient for practical purposes, being independent of W .  The dependence on el 
calculated for all four quantities is plotted in figure 1 .  By applying a step size in q as 
small as 0.005, the accuracy reached for A is 1 x and is even better for e2. For el = 0 (an incompressible fluid), analysis shows that B(q) = 1 so that E = 2, 

are monotonic functions, decreasing and 
increasing respectively. It turns out that the decrease of 6,(G1) is slightly steeper 
than that of the first- and second-order perturbation solutions C!jl)(Cl) and Cp)(C,) ; 
at el = 0.5 the value of 8, is 3.43% lower than CP) and 1.03% lower than Cp). 

The velocity profile E ( x )  derived from the calculated function D(q) is plotted in 
figure 2 ( a )  for GI = 0 and el = 0.5. The figure shows that, even for the very large 
value of Cl = 0.5 (experimental values of el are usually of the order lop4), only a 
slight deviation occurs from the parabolic profile that corresponds with GI = 0. The 
maximum absolute deviation is about 0.06 for x = 0.69 as can be read from figure 

6 - - 1  - *, and A = +7c and thus GLA2 = 0 and G2 A = in. 
Figure 1 shows that both 6,(Cl) and 
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a, = 3.9269904422 x lo-' a4 = 9.1193885456 x 
a, = -7.9577480524~ lo-' a5 = -1.3526212598~ 
a2 = 2.6279141191 x a6 = -3.0505976722 x lo-' 
a3 = 2.385641 1376 x a7 = 6.354004225 1 x lo-' 

TABLE 1. Polynomial coefficients for 6, A as a function of el A' 

2 ( 6 ) ,  where the deviations from the parabolic profile are plotted for the exact profile 
E ( x )  and also for the first- and second-order perturbation profiles E(l ) (x )  and E@)(x)  
as given in (51) and (63). 

The calculation procedure for the viscosity, starting from the experimental data 
for the mass-flow rate I and the pressures p ,  and p,, at the ends of the capillary, is 
based on the quantities C 2 A  and e 1 A a  which were determined in the foregoing 
numerical analysis. Firstly, d,A was fitted by a least-squares method to a 
polynomial in el A2,  

7 

6, A = 2 ai(e1 Az) i ,  
i = O  

The values of coefficients uo-u7 are given in table 1. The value of a, practically equals 
in- The standard deviation of this fit is 9.3 x lo-". 

By using definitions (15) and (82) for W and A we obtain 

and 

The latter equation is rewritten as 

and then integrated over L. This results in 

or 

The interval [13,,,pb] is divided into a sufficiently large number, 2n, of equal 
intervals. For each intermediate pressure 

i p . = p  z b --(p 2n b - $)ex), i = 1 > 2 ? n . . > 2 n - 1 ,  

the density p = p(p) and the derivative i3p/ap are calculated from the equation of 
state (7). Then, for the series of pressure values pi ,  the quantity A2 is computed 
using (85) and, next, the corresponding values of d 2 A  are calculated, using the 
polynomial fit (84). Finally, the integrals appearing in (19) for X and in (89) for A are 
computed using the well-known Simpson method. For the particular case of an 
incompressible fluid (c2 A = in), the correction d equals zero, as required. 
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If the common assumption is made that parameter d, (and hence c2 and A )  has 
a constant value in the pressure range over the capillary, then 

and 

A = (8/1t)(C~A)-l ,  

C1A2 = 12Y/(R4X).  

With (38) and (42) this expression for CIA2 is written as 

c, A2 = ($)2 cy, (92) 

and substituted in the polynomial (84). Using also the values of the coefficients a, 
given in table 1,  this yields 

Thus, from this result for A ,  we may conclude that the numerical calculation for a 
constant C, leads to the same coefficients for the linear and quadratic term in Cy) as 
found in the second-order perturbation solution (68). 

Calculation of the correction A on the viscosity according to (89) for a non- 
constant el and according to (90) for a constant C, shows that, for practical 
purposes, the two (small) values of A do not differ significantly. Therefore, there is 
no necessity to apply the more elaborate non-constant Cl differential method for 
calculation of the viscosity. On the other hand, this method is very well suited for 
obtaining insight into the dependence on the axial coordinate for various quantities. 

4.2. Application 

The main goal of this paper is to provide a soundly based formalism for the evaluation 
of the coefficient of viscosity from experimental data measured with a capillary 
viscometer. We have applied (van den Berg et al. 1990) this formalism to our 
experimental data for ethylene, obtained by means of a viscometer with a capillary 
with radius R = 3.87 x lop5 m and length L = 0.8162 m. This application showed in 
particular the significance of the compression factor F, (equation (40)) with respect 
to the calculated viscosity values. Moreover, as will be reported in a future paper, it 
turned out that these values agree very well with those obtained by other authors 
from various experimental techniques. This agreement yields an independent 
argument for the validity of the formalism for a compressible capillary flow as 
presented here. 

To give an example of the actual numerical computation of the dependence on z 
for various functions, we have selected one of our data points on ethylene. The point 
chosen is in the critical region (temperature 1.3 K above the critical temperature 
T,  = 282.35 K) in order to emphasize the impact of a large compressibility K* of 
the fluid on the z-dependence of the quantities involved. This point is characterized 
by a mass-flow rate I = 4.555 x lo-' kg/s, pressure p ,  = 5.19700 MPa and p,, = 
5.16094 MPa and thus a pressure difference Ap = 3.606 x MPa, and density 
pb = 8.264 mol/l and pex = 6.355 mol/l. We have calculated a mean density 
( p ( p ) )  = 7.182 mol/l, compression factor ( p ( p ) ) / p b  = 0.8691, a Reynolds number 
Re(o) = 435, acceleration/profile correction d = 0.00068, viscosity qp = 19.81, 
q ( O )  = 17.22 and q = 17.21 pPa s. The equation of state developed by IUPAC 
(Jacobsen et al. 1988) has been used. 

The profiles of the functionsp(z), p(z) and u,(z), C1(z) and ~ ~ ( 2 )  versus the reduced 
axial coordinate z/L are displayed respectively in figures 3(a) ,  3(b) and 3 ( c ) .  I n  



18 H .  R. v a n  den Berg, C. A .  ten Seldam and P .  8. v a n  der Gulilc 

n n 

0 E 
v 

Q J .’ a, 
5.150 6.3 0.80 

0 0.5 1 .o ‘ 0  0.5 1 .o 

n 

6.585 5: 
a, 

$l 
W 

0.0014 1u- 

0.0008 6.560 
0 0.5 1 .o 0 0.5 1 .o 

Z l L  Z l L  

FIGURE 3. The dependence of various quantities on the axial coordinate in a capillary (radius 
0.0387 mm, length 816.2 mm) for a flow of ethylene : (a-c) refer to a data point clove to  the critical 
point and ( d )  to a point far away from it. (a)  and (d)  the dependence of the pressure: ( b )  the 
dependence of the density and the velocity, p,, is the critical density; (c) the dependence of the 
isothermal compressibility and the Compressibility parameter. 

figure 3(a) ,  the deviation of p ( z )  from the frequently used approximation of a linear 
pressure dependence is striking. The determination of p ( z )  is based on (86). For the 
series of equidistant pressures pi, the values of dp/dz are calculated with this 
equation at given 7 from the known ejz A-values. Subsequently, successive Simpson 
integrations over n sets of three dzldp-values lead to the values x2i = z(pZi) for i = 1, 
2, ... ,n starting from ~ ( 1 3 ~ )  = 0, and thus lead to ~ ( 2 ) .  In  figure 3(b), the decreasing 
S-curve for the density p(z), crossing the critical density pc, is shown, together with 
the (30%) increasing velocity u,(z). The density is found directly from p ( z )  by means 
of the equation of state. From p(z) the other mean density (p(z ) ) ,  defined in the 
paragraph following (19), has been calculated as 7.316 mol/l, which is 1.9% larger 
than ( ~ ( p ) ) .  For the quantity 2 (equation (19)), written as fP/L, f  = 1.49 is found. 
The velocity is calculated from (75) using the Q:,-values found from the set of c2 A- 
values by means of the polynomial fit 

This polynomial is determined by a least-squares method applied to the 51 pairs of 
(6,,62A)-values for el = 0, 0.01, 0.02, ... , 0.5 which were introduced earlier and 
which correspond with 1 - (8/n) cjz A = 0,  x 0.005, w 0.010,. . . , % 0.275. The values 
ofthe coefficients b,-b, are: b, = 2.0000179; b, = -0.56375100; b, = -0.32775611; 
b, = -0.21998542. The standard deviation of this fit is 1.7 x lo-’. 

From figure 3 ( c )  it  can be seen that, due to the maximum in the compressibility 
K ~ ,  GI also has a maximum nearly halfway along the capillary and that, in spite of 
the large K ~ ,  the values of 

The computation of z(p) and u,(z) can easily be checked since z(p,,) must be equal 
to  L and the product p(x)  um(x) is equal to the quantity W ,  which must be constant, 
i.e. independent of z. 

remain small with an average of 1.4 x lop3. 
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For comparison, the function p ( z )  is shown in figure 3 ( d )  for a similar data point, 
but at a temperature much farther (16 K) above the critical temperature. The 
pressure dependence is linear in this case, where K~ x 0.54 MPa-l, 6, x 8.10-5, 
(p (p ) )  = 6.475 mol/l, (p(p) ) /p ,  = 0.9902, (p(x) )  = 6.477 mol/l and um(z) shows a 
slight (2  YO) linear increase with x. 
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Appendix 

through a long tube can be written as 
The correctedt result of Prud'homme et al. (1986) for the mass flow of an ideal gas 

rcR4 
I = -pb h(6) A p  [ 1 - &K*@( 1 - 6) ( h ( ~ ) ) - ~  

8YL 
+ : ( E P ) '  ( h ( € ) ) - 1 + ~ ( K * € P ) 2 ( h ( € ) ) - 3 +  . . . I ,  (A I )  

with 

Furthermore, since the gas is ideal, the mean density is ( p @ ) )  = 4(pb+pex) = h(e)pb.  
In  order to make a comparison between (A 1) and the present second-order 
perturbation solution (68), the quantities K*$ and ( ~ / 3 ) ~  must be expressed in the 
parameters C$'" and Cr) as given in (42) and (44) w i t h p  = 1 (sof = 3). Therefore, we 
substitute 

Using (68) for T / $ O )  and omitting those terms which exceed the second order of 
magnitude, one finds 

K*I$ = 16C~0)(1 + Cp)), ( K * E / ~ ) ~  = 256Ci0)', = CiO). (A 4) 
Substitution in Prud'homme's formula (A 1) yields 

'I = p ' o ' [ l  ~ 1 ~ ( 0 ) ~ ~ ~ ( 0 ~ ~ + Z ~ ( O )  + U q ( O ) Z ]  
2 1  2 1  3 3  2 7 0 1  

2 1  3 3  2 7 0 1  (A 5) = p )  [ 1 - IC(0) + ZC(0) + UC(O)Z] I 
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